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Abstract

The virtual passive control technique has recently been applied to structural damage detection, where the
virtual passive controller only uses the existing control devices, and no additional physical elements are
attached to the tested structure. One important task is to design passive controllers that can enhance the
sensitivity of the identified parameters, such as natural frequencies, to structural damage. This paper
presents a novel study of an optimal controller design for structural damage detection. We apply not only
passive controllers but also low-order and fixed-structure controllers, such as PID controllers. In the
optimal control design, the performance of structural damage detection is based on the application of a
neural network technique, which uses the pattern of the correlation between the natural frequency changes
of the tested system and the damaged system.
r 2004 Published by Elsevier Ltd.
1. Introduction

Vibration-based structural damage detection has received considerable attention in recent years
[1–4]. One important and challenging issue is how to use a limited experimental setup, such as a
small number of sensors, to detect effectively possible damage. Recently, a transfer function
correlation approach [3] was developed for damage detection, based on a comparison of the
identified transfer function parameter change and the change of the analytical model due to
damage. Rather than a large number of sensors, only a few sensors are required for this approach
see front matter r 2004 Published by Elsevier Ltd.
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[3,5]. This correlation approach has been applied to identify experimentally the damage location
and intensity of a flexible beam system [6].
The vibration-based damage detection method is based on the analysis of the identified

parameters, which have uncertainty due to noise and environmental change. In general, the
identified mode shapes are more sensitive to noise and environmental uncertainty than the
identified natural frequencies. On the other hand, the natural frequencies are sensitive to
structural damage, such as stiffness loss and cracking. Thus, the identified natural frequencies are
more reliable for damage detection than the identified mode shapes. In real applications the
identified natural frequencies of an open-loop system may not provide enough information for
damage detection. To generate more information, some researchers have proposed the use of
‘‘Twin’’ structures, where a structure is attached to the tested structure, for damage detection [7].
The concept of physical attachment of structures may limit the application of this technique. To
solve this problem, we use the natural frequencies of closed-loop systems with virtual passive
controllers [8], which resemble mass–spring dashpots. When closed-loop systems are used for
damage detection, one important issue is how to design controllers that can enhance the sensitivity
of the identified natural frequencies to structural damage. In this paper, we plan to apply not only
passive controllers but also low-order and fixed-structure controllers to structural damage
detection. Passive controllers almost always augment the damping of the system and maintain the
stability of the system. Low-order and fixed-structure controllers can be designed to incorporate
modern ideas of robustness and optimality.
The correlation approach has been used to study the characteristics of the transfer function

parameter change due to structural damage [5]. This study shows that the correlation method can
generate effective neural network (NN) patterns and significantly simplify the NN structural
damage detection procedures. This paper presents a novel study of an optimal controller design
for structural damage detection. The proposed optimal control technique is based on a neural
network approach [5], which uses the pattern of identified natural frequency correlation to
distinguish the damaged element from the undamaged element. The locations of sensors and
actuators are important for the performance of vibration suppression as well as the
performance of structural damage detection. The associated issue of sensor placement will also
be discussed.
2. Feedback controller

The study is based on closed-loop systems with different types of feedback controllers, passive
controllers and low-order controllers.
2.1. Passive controllers

The second-order dynamic equation of structural vibration is used,

M €x þ D _x þ Kx ¼ Bu; ð1Þ

y ¼ Ca €x þ Cv _x þ Cdx: ð2Þ
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Here x is a p � 1 displacement vector, and M;D; and K are mass, damping, and stiffness matrices,
respectively. In the measurement equation, y is the q � 1 measurement vector, and Ca;Cv and Cd

are acceleration, velocity, and displacement influence matrices. The natural frequency vector of
the open-loop system is defined as

o0 ¼ ½o1o2 . . .op�
T: ð3Þ

The measurement equation may be used either directly or indirectly for a feedback controller
design. First we use direct output feedback, where the input vector u is

u ¼ �Fy ¼ �FCa €x � FCv _x � FCdx; ð4Þ

where F is a constant gain matrix. Substituting Eq. (4) into Eq. (1) yields

ðM þ BFCaÞ €x þ ðD þ BFCvÞ _x þ ðK þ BFCd Þx ¼ 0: ð5Þ

The natural frequency vectors of the m closed-loop systems with different designed gain matrices
are used for damage detection. These vectors are computed as

oj ¼ ½oj
c1o

j
c2 . . .o

j
cp�

T; j ¼ 1; . . . ;m;

where oj
ci is the ith natural frequency of the jth closed-loop system.

Second, the feedback controller is described as a set of second-order dynamic equations,

Mc €xc þ Dc _xc þ Kcxc ¼ Bcuc; ð6Þ

yc ¼ Cac €xc þ Cvc _xc þ Cdcxc: ð7Þ

Here xc is the controller state vector, and Mc;Dc; and Kc are the controller mass, damping and
stiffness matrices, respectively. The quantities Mc;Dc;Kc;Cac;Cvc; and Cdc are the design
parameters for the controller. Let the input vectors u and uc [9] be

u ¼ yc ¼ Cac €xc þ Cvc _xc þ Cdcxc; ð8Þ

uc ¼ y ¼ Ca €x þ Cv _x þ Cdx: ð9Þ

Substituting Eq. (8) into Eq. (1) and Eq. (9) into Eq. (6) yields

Mt €xt þ Dt _xt þ Ktxt ¼ 0; ð10Þ

where

Mt ¼
M �BCac

�BcCa Mc

� �
; Dt ¼

D �BCvc

�BcCv Dc

� �
; ð11Þ

Kt ¼
K �BCdc

�BcCd Kc

� �
; xt ¼

x

xc

� �
: ð12Þ

In the controller design, Mc;Dc;Kc;Cac;Cdc; and Cvc are chosen such that the closed-loop system
is stable [9,10].
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2.2. Low-order controllers

Low-order controllers are described as the form of a transfer function. The closed-loop transfer
function of a open-loop system GðsÞ with a negative feedback controller KðsÞ is

PðsÞ ¼
GðsÞ

I þ GðsÞKðsÞ
: ð13Þ

For damage detection, we use the identified natural frequencies of m closed-loop systems with
different designed controllers.
3. Correlation approach

A brief introduction to the correlation approach is given in this section. The changes of the
parameter vectors of the ith referred damage case [5], such as the stiffiness loss of the ith element,
are defined as

Doij ¼ oij � oj; j ¼ 0; 1; . . . ;m; ð14Þ

where oij are the natural frequency vectors of the ith damage case. The change vectors Doij are
used as references and these vectors are obtained from analytical models such as finite
element models. Because of the perturbation of each parameter, we define the weighted change
vectors [3] as

DoW
ij ¼ ½Doijð1Þ=W j1 . . .DoijðkÞ=W jk�

T; ð15Þ

where DoijðlÞ is the lth element of Doij ; and W jl is the standard deviation of
fDo1jðlÞ; Do2jðlÞ; . . . ;DonjðlÞg for the considered n damage cases. The correlations between the
tested system with the weighted change vectors DoW

j ; which represent the difference of the
identified parameters between the tested system and the healthy system, and the ith damage case
are defined as

Cij ¼
ðDoW

j Þ
TDoW

ij

jDoW
j jjDoW

ij j
; j ¼ 0; 1; . . . ;m: ð16Þ

The correlation Cij represents the cosine between two vectors. The value of the correlation Cij is
between �1 and 1. When Cij is less than 0, the change vector DoW

j of the tested system is in a
different direction (4901) from the change vector DoW

ij due to the ith element damage. It strongly
implies that the ith element is not damaged [3]. The minimum correlation of the tested system
corresponding to the ith damage case is defined as

Ci ¼ minfCi0;Ci1; . . . ;Cimg: ð17Þ

The magnitude ratios between the tested system and the ith damage case are defined as

Rij ¼
jDoW

j j

jDoW
ij j

; j ¼ 0; 1; . . . ;m: ð18Þ
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The ratio between the maximum magnitude ratio and minimum ratio will be used as an index for
damage detection, and it is defined as

RAi ¼
RX i

RNi

; ð19Þ

where

RX i ¼ maxfRi0; . . . ;Rimg; RNi ¼ minfRi0; . . . ;Rimg: ð20Þ

The magnitude ratios can be used to identify the intensity and location of damage [6].
4. Neural network approach

In this section, a neural network approach based on the correlation approach is presented. Fig.
1 shows the diagram of this NN method with Perceptron architecture [11]. The inputs of the
network are the identified change vectors DoW

j ; j ¼ 0; 1; . . . ;m and the identified magnitude ratios
RAi; i ¼ 1; . . . ; n: The input vector p of the networks is defined as

p ¼
ðDoW

0 Þ
T

jDoW
0 j

. . .
ðDoW

m Þ
T

jDoW
m j

�RA1 . . .�RAn

� �T
: ð21Þ

For damage detection, the outputs of the first layer are used to indicate the damage status
determined by each of the variables Cij and RAi: The elements of the output vector a1 are

a11 ¼ hðC10 þ b12Þ

..

.

a1mþ1 ¼ hðC1m þ b1
mþ1Þ

a1mþ2 ¼ hð�RA1 þ b1mþ2Þ

..

.

a1nðmþ2Þ�1 ¼ hðCnm þ b1
nðmþ2Þ�1Þ

a1nðmþ2Þ ¼ hð�RAn þ b1
nðmþ2ÞÞ; ð22Þ
Fig. 1. Two-layer Perceptron network.
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where h is the hard limit function [11] and it is defined as

hðxÞ ¼
0; xo0;

1; xX0:

�
ð23Þ

The weight matrix of the first layer is computed as

W 1 ¼

ðDoW
10 Þ

T

jDoW
10 j

0 � � � 0 0 � � � 0

0
ðDoW

11 Þ
T

jDoW
11 j

� � � 0 0 � � � ..
.

..

. ..
. ..

.

0 0 � � �
ðDoW

1mÞ
T

jDoW
1mj

0 � � �

0 0 � � � 0 1 � � � 0

ðDoW
20 Þ

T

jDoW
20 j

0 � � � 0 0 � � � 0

..

. ..
. ..

.

ðDoW
n0 Þ

T

jDoW
n0 j

0 � � � 0 0 � � � 0

..

. ..
. ..

.

0 0 � � �
ðDoW

nmÞ
T

jDoW
nmj

0 � � � 0

0 0 � � � 0 0 � � � 1

2
666666666666666666666666666666666666664

3
777777777777777777777777777777777777775

: ð24Þ

The components of this weight matrix can be trained with the use of the updated model and the
identified transfer function parameters. The elements of the bias vector b1 are chosen to
distinguish damage status. For example, if b11 is chosen as �0:99; the ‘‘yes’’ damage status of the
first element from the correlation C10 requires that C10 be larger than 0.99 ða11 ¼ 1Þ: The damage
status of element 1 is determined by correlations C1j; j ¼ 0; 1; . . . ;m and the ratio RA1: When all
the outputs a1

i ; i ¼ 1; . . . ;m þ 2 are 1, then a2
1 is 1 and element 1 is a possible damaged element.

The ith element of the output vector a2 is used to indicate the damage status of the ith element.
The elements a2

i are computed as

a2
1 ¼ hða1

1 þ a12 þ � � � þ a1
mþ2 þ b21Þ

a2
2 ¼ hða1

mþ3 þ a1
mþ4 þ � � � þ a12ðmþ2Þ þ b22Þ

..

.

a2
n ¼ hða1

ðn�1Þðmþ2Þþ1 þ � � � þ a1nðmþ2Þ þ b2nÞ ð25Þ
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with

b2i ¼ �m � 2; i ¼ 1; . . . ; n: ð26Þ

The element a2i is 1, which indicates that the ith element is the possible damaged element,
if all a1ði�1Þðmþ2Þþj; j ¼ 1; . . . ;m þ 2; which correspond to the ith damage case, are equal
to 1. To demonstrate the results of damage detection, the following term is defined for
discussion.

Identifiable damage: When the ith element is damaged, this damage case is identifiable if a2i ¼ 1
and a2

j ¼ 0; j ¼ 1; . . . ; i � 1; i þ 1; . . . ; n:
If the damage of the ith element is identifiable, then the damage of the ith element can be

uniquely identified. The damage of element i is identifiable if and only if

a2i ¼ 1; ð27Þ

and

ad ¼
Xn

i¼1

a2i ¼ 1: ð28Þ

The variable ad is the number of possible damage candidates.
5. Optimal controller design

The problem is to find an ‘‘optimal’’ controller that enhances the difference of correlations and
magnitude ratios between the damaged element and the undamaged element, so the damaged
element can be distinguished. In this paper, the objective function is based on the minimum
correlations Ci and ratios RAi for all possible damage cases. For passive controller design, the
function related to the ith element damage case can be defined as

f i ¼ e1
Xn

j¼1; jai

a2
j þ e2

Xn

j¼1; jai

ðCj � b1ÞhðCj � b1Þ

þ e3
Xn

j¼1; jai

ðb2 � RAjÞhðb2 � RAjÞ; ð29Þ

where ej are given constants, b1 is chosen to distinguish damage based on correlation, b2 is chosen
to distinguish damage based on magnitude ratio, and h is the hard limit function. For the function
f i; the first term results from the number of damage candidates excluding the ith element, the
second term is from the correlation of the element with minimum correlation higher than the
specified value b1; and the third term is from ratios lower than the specified value b2: The objective
function for optimal controller is defined as

f ¼
Xn

i¼1

f i: ð30Þ
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6. Results and discussion

The finite element model of a cantilevered aluminum Euler’s beam, as shown in Fig. 2, is used
for study. The length, width, and thickness of this beam are 1, 0.0254, and 0.000635 meters,
respectively. The study is based on the analysis of the finite element model of this beam structure
[12]. For structural damage, we consider the stiffness loss of 15 elements with equal lengths from
the fixed end to the free end. Next, we examine the results for each element with 20% stiffness loss.
The referred vectors DoW

ij ; which are used for computing correlations and magnitude ratios, are
the weighted parameter changes due to 0.1% stiffness loss of the ith element. The previous works
show that correlations and magnitude ratios have negligible changes with different levels of
damage, such as stiffness loss.

6.1. Direct output feedback

In the direct output feedback example, we use two displacement measurements located at
positions 3 and 15, respectively. The first closed-loop system has the collocated output feedback
controller at position 3, where the controller gain is g1: The second closed-loop system has the
collocated output feedback controller at position 15, where the controller gain is g2: These
collocated output feedback controllers function like stiffness added at positions 3 and 15:

0 � � � 0 � � � 0

..

. . .
. ..

.

0 � � � k3 þ g1 � � � ..
.

..

. ..
. . .

.

0 � � � k15 þ g2

2
666666664

3
777777775
: ð31Þ

The natural frequencies of the first 3 modes of the open-loop system and the two closed-loop
systems are used for damage detection. Table 1 lists the natural frequencies of the first 3 modes of
the open-loop system for three damage cases (20% stiffness loss of element 1, 3, or 5). Fig. 3
shows the correlation for the element 3 damage case when various controller gains are applied to
the system, where g1 and g2 are gains of output feedback at positions 3 and 15, respectively. Fig.
3(a) shows the results related to the first closed-loop system, the increase of the gain at position 3
can dramatically enhance the correlation difference between the first 2 elements and element 3,
Fig. 2. Cantilevered Euler’s beam.
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Fig. 3. Correlation for element 3 damage case: (a) —, g1 ¼ 0; - -, g1 ¼ 0:5; - � -, g1 ¼ 1; � � � ; g1 ¼ 1:5: (b) —, g2 ¼ 0; - -,
g2 ¼ 0:5; -�-, g2 ¼ 1; � � � ; g2 ¼ 1:5:

Table 1

Natural frequencies (Hz) of various damage cases

Mode No damage Element 1 Element 3 Element 5

1 0.2314 0.2246 0.2269 0.2287

2 1.4571 1.4252 1.4546 1.4523

3 4.1401 4.0700 4.1322 4.0853

J.-S. Lew / Journal of Sound and Vibration 281 (2005) 799–813 807
where the correlation is 1 for element 3. The increase of the gain related to the displacement
output at position 15 (as shown in Fig. 3(b)) can dramatically enhance the correlation difference
between the first 5 (exclude element 3) elements and element 3. But the increase of gain does not
always enhance the correlation difference between the damaged element and the undamaged
element. Fig. 3 shows that all the correlations C3j; corresponding to the element 3 damage, are 1.
Also the ratio RA3 is 1 for the open-loop and the closed-loop systems with different controllers. In
this example, the variables b1i corresponding to correlation are chosen as �0:97; and the variables
b1

i corresponding to magnitude ratio are chosen as 1.2. This implies that if and only if
CijX0:97; j ¼ 0; 1; . . . ;m; and RAip1:2; the output a2

i is 1. If the output a2
i is 1, the ith element is a

damage candidate.
To obtain optimal controllers, we use function f min in Matlab to find the minimum of the

defined objective function in Eq. (30). The constant variables in Eq. (29) are chosen as e1 ¼ 0:03;
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Fig. 4. Correlation for element 3 damage case with optimal controller: —, correlation of open-loop system; - -,

minimum correlation. (a) Tested system with 0.1% stiffness loss, (b) tested system with 20% stiffness loss.

Table 2

Number of possible damage candidates ad

Element Open g1 ¼ 1 g1 ¼ 0:900
g2 ¼ 1 g2 ¼ 1:250

1 1 1 1

2 1 1 1

3 1 1 1

4 1 1 1

5 1 1 1

6 1 1 1

7 2 1 1

8 1 1 1

9 2 1 1

10 1 1 1

11 2 2 2

12 5 3 2

13 4 2 1

14 4 1 1

15 4 1 1

J.-S. Lew / Journal of Sound and Vibration 281 (2005) 799–813808
e2 ¼ 1; e3 ¼ 0; b1 ¼ 0:97; b2 ¼ 1:2: This is a nonlinear optimization problem, the initial gains are
chosen as g1 ¼ 1; g2 ¼ 1: The optimal gains are g1 ¼ 0:900; g2 ¼ 1:250; respectively. Fig. 4 shows
the correlation for element 3 with stiffness loss of 0.1%, and 20% when the natural frequencies of
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the open-loop system and the two closed-loop systems with optimal controllers are used. The use
of the closed-loop systems with optimal controllers can dramatically enhance the correlation
difference between element 3 (damaged element) and other elements with correlation (open-loop
system) close to 1. The correlation of the open-loop system and minimum correlation have
negligible changes when stiffness loss varies from 0.1% to 20%. Table 2 shows the results when
the natural frequencies of the open-loop system and the two closed-loop systems with various
gains are used. For the open-loop system, 7 damaged cases are not identifiable, where ad is larger
than 1. For the element 12 damage case, there are 5 damage candidates ðad ¼ 5Þ: The number of
non-identifiable damage cases reduces to 2 when the correlations of open-loop system and two
closed-loop systems with optimal controllers are used. For the systems with optimal controllers,
only two damage cases (elements 12 and 13) cannot be distinguished from each other.

6.2. Controller with second-order dynamics

Two passive controllers, which are spring–mass systems with two-degrees-of-freedom (Fig. 5),
are attached at positions 3 and 15 of the cantilevered Euler’s beam. The dynamic equations of
these two passive controllers are

mc1 0

0 mc2

� �
€xc1

€xc2

� �
þ

kc1 þ kc2 �kc2

�kc2 kc2

� �
xc1

xc2

� �
¼

kc1

0

� �
x3; ð32Þ

mc3 0

0 mc4

� �
€xc3

€xc4

� �
þ

kc3 þ kc4 �kc4

�kc4 kc4

� �
xc3

xc4

� �
¼

kc3

0

� �
x15; ð33Þ
Fig. 5. Cantilevered Euler’s beam with passive dynamic controllers.
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Table 3

Design variables of controllers

Controller 1 Controller 2

mc1 0.002 0.008

mc2 0.004 0.006

mc3 0.006 0.004

mc4 0.008 0.002

kc1 g1 2g2

kc2 2g1 g2
kc3 2g1 g2
kc4 g1 2g2

Table 4

Number of possible damage candidates ad

Element g1 ¼ 0:2 g1 ¼ 1 g1 ¼ 1:239
g2 ¼ 0:2 g2 ¼ 1 g2 ¼ 2:222

1 1 2 1

2 1 1 1

3 1 1 1

4 1 1 1

5 1 1 1

6 1 2 1

7 1 1 1

8 1 2 1

9 2 3 1

10 3 3 1

11 3 2 1

12 3 2 1

13 3 1 1

14 3 1 1

15 2 1 1

J.-S. Lew / Journal of Sound and Vibration 281 (2005) 799–813810
where x3 and x15 are displacements at positions 3 and 15, respectively. The results of damage
detection are based on the analysis of the first 3 modes of two closed-loop systems with controllers
that have design variables as listed in Table 3. The mass variables of both controllers are chosen as
constant. The stiffness variables of both controllers are

½kc1 kc2 kc3 kc4� ¼ ½1 2 2 1�g1; ½kc1 kc2 kc3 kc4� ¼ ½2 1 1 2�g2:

Each controller has one varied gain gi: The initial gains for optimization process are g1 ¼ 1;
g2 ¼ 1: The optimal gains are g1 ¼ 1:239; g2 ¼ 2:222; respectively.
Table 4 shows the results when the natural frequencies of the open-loop system and the two

closed-loop systems with various gains are used. For the systems with g1 ¼ 0:2; g2 ¼ 0:2; seven
damaged cases are not identifiable. For the systems with optimal controllers, all the damage cases
are identifiable.
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6.3. Low-order controllers

For the low-order controllers, the collocated output feedback controller with displacement
measurement at each node is used. The transfer function of the designed controller is

k2s þ k3

s þ k1
:

There are 3 variables for this controller. In this optimal control design, only natural frequency
correlations excluding magnitude ratios are used. The objective function related to the ith damage
case is defined as

f i ¼ e1
Xn

j¼1; jai

a2
j þ e2

Xn

j¼1; jai

ðCj � b1ÞhðCj � b1Þ þ f c
i :

For function f i; the first term is from the number of damage candidates excluding the ith element,
the second term is from the correlation of the element with correlation higher than the specified
value b1; and f c

i is related to the specified controller performances, such as damping and controller
force. The optimal controller is designed to: (1) enhance the correlation difference between the
damaged element and the undamaged element for all the damage cases; (2) maintain the stability
of the controller ðk140Þ; (3) satisfy the specified damping performance; (4) restrict the control
force.
The natural frequencies of the first 3 modes of the open-loop system and one closed-loop system

with a collocated feedback controller at each position are used for damage detection. Table 5
shows the results when the natural frequencies of the open-loop and the closed-loop system with
optimal controller at various positions ns (node number in Fig. 2) are used.
Table 5

Number of possible damage candidates ad

Element ns ¼ 1 ns ¼ 8 ns ¼ 11 ns ¼ 15

1 1 1 1 1

2 1 1 1 1

3 1 1 1 1

4 1 1 1 1

5 1 1 1 1

6 1 1 1 1

7 2 1 1 1

8 1 1 1 1

9 2 1 2 1

10 1 1 1 1

11 2 2 2 1

12 5 5 3 1

13 4 4 3 1

14 4 4 4 1

15 4 4 2 1
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From Table 5, when the natural frequencies of the open-loop and the closed-loop system with
optimal controller at position 1 are used, 7 damaged cases are not identifiable, where ad is larger
than 1. For the element 12 damage case, there are 5 damage candidates (ad ¼ 5). All the damage
cases are identifiable when the natural frequencies of the open-loop and the closed-loop system
with optimal controller at position 15 are used. The performance of damage detection is very
sensitive to sensor/actuator location. For this example, the optimal sensor/actuator position is at
position 15. In this paper, the natural frequencies of the first three modes are used for damage
detection. In general, the low-frequency modes dominate structural vibration, and they are less
sensitive to noise. The effect of number of modes on damage detection can be found in Ref. [5].
From the results with different types of optimal controllers, the design based on the low-order

controller provides the best performance for damage detection. This performance cannot be
achieved with the designed optimal passive controllers. In this paper, the finite element model of a
flexible beam with 20% stiffness loss of each element is used as the tested system. In the real
application, the identified transfer functions of the tested system are used for damage detection [6].
The effect of the identified parameter uncertainty on structural damage detection can be found in
Refs. [3,5]. The correlation approach has been applied to a truss structure [3]. A more efficient
correlation approach based on the NN technology with the trained patterns can be applied to a
large more complex structure.
7. Conclusions

This paper presents a novel study of optimal controller design for structural damage detection.
This study is based on a neural network approach that uses the correlation of the identified
natural frequency change of open-loop and closed-loop systems. In the optimal control designs,
passive controllers and low-order controllers are used. The results show that the use of optimal
controllers can significantly enhance the correlation difference between the damaged element and
the undamaged element. This can dramatically improve the performance of damage detection.
The example of low-order controllers demonstrates that the controller can be designed for both
the performance of structural damage detection and also the specified damping performance. The
performance of damage detection is very sensitive to sensor/actuator location.
Acknowledgements

Support for this research by NASA Grant NCC5-228 and NSF Grant HRD-9706268 is greatly
appreciated.
References

[1] S.W. Doebling, C.R. Farrar, M.B. Prime, A summary review of vibration-based identification methods, Shock and

Vibration Digest 205 (1998) 631–645.



ARTICLE IN PRESS

J.-S. Lew / Journal of Sound and Vibration 281 (2005) 799–813 813
[2] A.K. Pandey, M. Biswas, M. Samman, Damage detection from changes in curvature mode shapes, Journal of

Sound and Vibration 145 (1991) 321–332.

[3] J.-S. Lew, Using transfer function parameter changes for damage detection of structures, AIAA Journal 33 (1995)

2189–2193.

[4] D.C. Zimmerman, M. Kaouk, Structural damage detection using a subspace rotation algorithm, Proceedings of the

33th AIAA/ASME/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA, Washington,

DC, 1992, pp. 2341–2350.

[5] J.-S. Lew, Damage detection using neural networks and transfer function correlation, Proceedings of the 18th

International Modal Analysis Conference, San Antonio, TX, 2000, pp. 1783–1789.

[6] J.-S. Lew, C. Hyde, M. Wade, Damage detection of flexible beams using transfer function correlation, Proceedings

of the ASME 17th Biennial Conference on Mechanical Vibration and Noise, Las Vegas, September 12–15, 1999.

[7] P. Trivailo, L.A. Plotnikova, L.A. Wood, Enhanced parameter identification for damage detection and structural

integrity assessment using ‘‘Twin’’ structures, Fifth International Congress on Sound and Vibration, University of

Adelaide, SA, 1997, pp. 1733–1741.

[8] J.-S. Lew, J.-N. Juang, Structural damage detection using virtual passive controllers, Journal of Guidance, Control,

and Dynamics 25 (2002) 419–424.

[9] J.N. Juang, M. Phan, Robust controller designs for second-order dynamic systems: a virtual passive approach,

Journal of Guidance, Control and Dynamics 15 (1992) 1192–1198.

[10] A.M. Bruner, W.K. Belvin, L.G. Horta, J.N. Juang, Active vibration absorber for the CSI evolutionary model

design and experimental results, Journal of Guidance, Control and Dynamics 15 (1992) 1253–1257.

[11] M.T. Hagan, H.B. Demuth, M. Beale, Neural Network Design, PWS Publishing Company, Boston, 1996.

[12] R.R. Craig, Structural Dynamics: An Introduction to Computer Methods, Wiley, New York, 1981.


	Optimal controller design for structural damage detection
	Introduction
	Feedback controller
	Passive controllers
	Low-order controllers

	Correlation approach
	Neural network approach
	Optimal controller design
	Results and discussion
	Direct output feedback
	Controller with second-order dynamics
	Low-order controllers

	Conclusions
	Acknowledgements
	References


